Genetics Screening

How can understanding your genome help improve your health planning?

Our genome is the blueprint that defines who we are.

We may have genetic vulnerabilities which combined with environmental health factors can put us at risk of diseases. Genetic screening is done to identify such gene alterations. This information can then assist GPs in personalising the patient’s health management, providing proactive and preventative healthcare for each individual tailored to genetic risk.

What is Whole Genome Sequencing (WGS) and why is it important?

Whole Genome Sequencing is the process of determining the complete DNA sequence of an individual’s genetic matter. Genes are small chunks of genetic information that we inherit from our parents. The human genome consists of approximately 20,000 genes, made up of 3 billion chemical building blocks, which are represented by combinations of the letters A G C and T on genetic test reports. The sequence of these letters reveals the individual’s unique code.

Other parts of the genome do not contain genes; they are noncoding and were formerly thought to be ‘junk’. Alternations in these regions may still have an impact on our health, by affecting a nearby or even more distant gene(s).

The whole genome – what is it?

Genetic dictionary basic concepts – see video link

ghr.nlm.nih.gov/primer

www.genomicseducation.hee.nhs.uk/education 

What percentage of people will benefit from genetic screening?

With our specifically chosen techniques, if we screen 100 people in a room we expect to find 5-6 people with significant actionable genetic variants.

SNP Profiling (Single nucleotide polymorphisms)

We will also identify another 5-6 people who will be at potentially 5-6 times greater risk of certain conditions by using a technique, called SNP profiling. Where the alterations are often outside the genes but still within the person’s genome. Very few other centres can offer this we are lucky enough that Prof Eeles Lab can do this. Single nucleotide polymorphisms (SNP) individually usually cause only a minor increased risk of a disease but if multiple SNPs are found, their cumulative risk of a particular disease may be up to 5-6 times the population risk.

In total we could identify up to 12% of people with key genetic life changing information

SNP profiling means that we will know which patients can be offered new trials of targeted screening programmes dependant on their SNP results.